# **Orthomodular Posets of Idempotents in Finite Rings of Matrices**

# Jürgen Flachsmeyer<sup>1</sup>

Received October 24, 1994

The idempotents, resp. Hermitian idempotents, of a unital ring, resp. involutive unital ring, form an orthomodular poset. We study these orthomodular posets for rings of matrices over the integers modulo m or over Galois fields. In analogy to the Hilbert space situation we look for idempotent matrices (projections) corresponding to splitting subspaces of finite-dimensional vector spaces.

### **1. IDEMPOTENTS OF A UNITAL RING**

For a real or complex Hilbert space  $\mathbf{H}$  let  $Hilb(\mathbf{H})$  be the corresponding complete atomistic ortholattice of all Hilbert subspaces  $E \subseteq \mathbf{H}$ . In a canonical way this lattice is isomorphic to the lattice of all Hermitian idempotents of the Banach algebra  $\mathbf{B}(\mathbf{H})$  of all bounded (= continuous) linear operators A:  $\mathbf{H} \rightarrow \mathbf{H}$ . We have

 $Hilb(\mathbf{H}) \leftrightarrow Proj(\mathbf{H})$  $E (= imP) \leftrightarrow P: \mathbf{H} \rightarrow \mathbf{H}$ 

whereby  $P \in \mathbf{B}(\mathbf{H})$  with  $P^2 = P$  and  $P = P^*$ . Instead of the algebra  $\mathbf{B}(\mathbf{H})$  one can start with any involutive unital ring  $\Re^*$  (Birkhoff, 1967) or even with any arbitrary unital ring  $\Re$  (Flachsmeyer, 1982; Katrnoška, 1990) to get by their Hermitian idempotents, respectively idempotents, an orthomodular poset. Let us recall the statements in full.

Theorem A. 1.1. Let  $\mathcal{R}$  be an arbitrary ring with unit. Then the set  $Idem(\mathcal{R}) = \{x: x \in \mathcal{R}, x^2 = x\}$  of all idempotents is an orthomodular poset with respect to the order

$$x \le y$$
:  $\Leftrightarrow x \cdot y = y \cdot x = x$ 

<sup>1</sup>FB Mathematik/Informatik, Ernst-Moritz-Arndt-Universität, 17489 Greifswald, Germany.

1359

and the orthocomplement

 $x^{\perp} = 1 - x$ 

1.2. If  $x \le y$ , then  $inf(y, x^{\perp})$  exists and  $inf(y, x^{\perp}) = y - x$ .

1.3. Orthogonality in  $Idem(\mathcal{R})$  means

$$x \perp y \Leftrightarrow x \cdot y = y \cdot x = 0$$

1.4. If  $x \perp y$ , then sup(x, y) exists and sup(x, y) = x + y.

2.1. If \* is a ring involution on  $\Re$ , then the set  $HermIdem(\Re) = \{x \colon x \in \Re, x^2 = x \text{ and } x^* = x\}$  of all Hermitian idempotents is an orthomodular poset with respect to the above-mentioned order and the orthocomplemention.

2.2. For  $x, y \in HermIdem(\Re)$  and  $x \leq y$  the difference y - x belongs to  $HermIdem(\Re)$  and is the infimum of y and  $x^{\perp}$ .

2.3. If  $x \perp y$ , then x + y belongs to  $HermIdem(\mathcal{R})$  and is the supremum of x and y.

*Remark.* In generalization of 1.2 and 1.4 the following properties in  $HermIdem(\mathcal{R})$  are fulfilled:

1.5. If x, y commute, i.e., xy = yx, then the infimum and the supremum exist and

$$\inf(x, y) = xy$$
  
 
$$\sup(x, y) = x + y - xy$$

Corollary. For a commutative unital ring  $\mathcal{R}$  the orthomodular poset  $Idem(\mathcal{R})$  is a Boolean algebra.

The argumentation is as follows. By the commutativity  $Idem(\Re)$  is an ortholattice and it is also distributive. Namely,

$$x \wedge (y \vee z) = x(y \vee z) = x(y + z - yz) = xy + xz - xyz$$
$$(x \wedge y) \vee (x \wedge z) = xy \vee yz = xy + yz - xyz$$

# 2. THE BOOLEAN ALGEBRA OF IDEMPOTENTS OF THE RING $Z_m$

Let  $\mathbb{Z}_m$  be the ring of the rests 0, 1, 2, ..., m - 1 of the integers *mod* m. Now,  $\mathbb{Z}_m$  is a commutative unital ring, therefore  $Idem(\mathbb{Z}_m)$  has to be a finite Boolean algebra. How does one get it?

*Theorem 1.* 1. The Boolean algebra of all idempotents of the ring  $\mathbb{Z}_m$  is isomorphic to  $2^k$ , where k is the number of the distinct prime factors of m:

$$Idem(\mathbf{Z}_m) \approx \mathbf{2}^k, \qquad m = p_1^{\nu_1} p_2^{\nu_2} \cdots p_k^{\nu_k}, \quad 2 \le p_1 < p_2 < \cdots < p_k \le m$$
where  $p_{\nu}$  are primes.

2. One obtains the nontrivial complemented pairs of  $Idem(\mathbb{Z}_m)$  as follows: Let A, B be any nontrivial splitting of the set  $\{1, 2, \ldots, k\}$ , i.e.,  $A \neq \{1, 2, \ldots, k\}$  $\emptyset, B \neq \emptyset, A \cap B = \emptyset, A \cup B = \{1, 2, \dots, k\}.$ 

Define  $a := \prod p_{\alpha}^{\nu_{\alpha}} (\alpha \in A), b := \prod p_{\beta}^{\nu_{\beta}} (\beta \in B).$ 

Then a, b are relatively prime, (a, b) = 1; therefore there exist integers u, v with  $a \cdot u + b \cdot v = 1$ .

By  $\overline{a} := au \mod m$  and  $\overline{b} := bv \mod m$  one has a complemented pair  $\overline{a}$ , b in Idem( $\mathbf{Z}_{m}$ ).

*Proof.* For  $\overline{a}$ ,  $\overline{b}$  it remains to show that in  $Idem(\mathbb{Z}_m)$  the following are satisfied:  $\overline{a} \wedge \overline{b} = 0$  and  $\overline{a} \vee \overline{b} = 1$ . According to 1.5 of the Remark this means

$$\overline{a} \cdot \overline{b} = 0$$
 and  $\overline{a} + \overline{b} - \overline{a} \cdot \overline{b} = 1$  in  $\mathbb{Z}_m$ 

But this holds by definition of  $\overline{a}$  and  $\overline{b}$ .

Table I shows the situation for some *m*.

# 3. HOW MANY IDEMPOTENT MATRICES EXIST OVER $Z_m$ ?

For a given model m and a given format number n we ask for the number of idempotent, resp. Hermitian idempotent, matrices of size  $n \times n$  over the basic ring  $\mathbf{Z}_m$ ,

> $card(Idem(Mat(n \times n, \mathbf{Z}_m)))$  $card(HermIdem(Mat(n \times n, \mathbf{Z}_m)))$

We will take the involution in the ring  $Mat(n \times n, \mathbf{Z}_m)$  of matrices over  $\mathbf{Z}_m$ 

|                                    |        |         |        |     |          |   | 1        | fable | I.           |    |         |    |           |    |           |    |         |
|------------------------------------|--------|---------|--------|-----|----------|---|----------|-------|--------------|----|---------|----|-----------|----|-----------|----|---------|
| m<br>Idem( <b>Z</b> <sub>m</sub> ) | 2      | 3       | 4      | 5   | 7        | 8 | 9        | 11    | 13<br>1<br>0 | 1  | 6       | 17 | 19        | 23 | 25        | 27 | 29      |
| m                                  | 6      | ,       | 10     | 1   | 12       |   | 14       |       | 20           |    | 21      |    | 22        |    | 24        | 2  | 26      |
| $Idem(\mathbf{Z}_m)$               | 3<br>0 | 4       | 5<br>0 | 6   | 4 9<br>0 | I | 7 8<br>0 | 3 5   | 16<br>0      | 7  | 15<br>0 | 5  | 11 1<br>0 | 2  | ə 16<br>0 | 13 | 14<br>0 |
| m                                  |        | - 30    | )      |     | 4        | 2 |          |       | 60           |    |         |    |           |    |           |    |         |
| $Idem(\mathbf{Z}_m)$               |        | 1       |        |     | I        | L |          |       | 1            |    |         |    |           |    |           |    |         |
|                                    | 16     | 21      |        |     |          | 5 | 22       | 16    | 21           | 25 |         |    |           |    |           |    |         |
|                                    | 6      | 10<br>0 | ) 15   | 5 2 | 12<br>(  |   | 36       | 36    | 40<br>0      | 45 |         |    |           |    |           |    |         |

#### Flachsmeyer

|--|

| lot m            | Idem(R)<br>card | HermIdem(R)<br>card | т     | IdemR<br>card | HermIdem(R)<br>card |
|------------------|-----------------|---------------------|-------|---------------|---------------------|
| $\overline{n=2}$ |                 |                     | n = 2 |               |                     |
| 2                | 8               | 4                   | 14    | 464           | 40                  |
| 3                | 14              | 6                   | 15    | 448           | 36                  |
| 4                | 26              | 6                   | 16    | 386           | 18                  |
| 5                | 32              | 6                   | 17    | 308           | 18                  |
| 6                | 112             | 24                  | 18    | 880           | 56                  |
| 7                | 58              | 10                  | 19    | 382           | 22                  |
| 8                | 98              | 10                  | 20    | 832           | 36                  |
|                  |                 |                     | n = 3 |               |                     |
| 9                | 110             | 14                  | 2     | 58            | 10                  |
| 10               | 256             | 24                  | 3     | 236           | 20                  |
| 11               | 134             | 14                  | 4     | 898           | 34                  |
| 12               | 364             | 36                  | 5     | 1552          | 52                  |
| 13               | 184             | 14                  |       |               |                     |

Table II.

as the matrix transpose:  $A \mapsto A^{\top}$ . We are far from a general sufficient answer. With the help of computers we counted the list in Table II.

We conclude this section with a few remarks on the order structure of  $Idem(\mathcal{R})$  and  $HermIdem(\mathcal{R})$ . Also with the help of computers we identified some of them and obtained their Greechie diagrams.

*Remark.* 1. *HermIdem*(*Mat*( $2 \times 2, \mathbb{Z}_6$ )) is the amalgam of two Boolean algebras  $2^4$  with the Greechie diagram given in Fig. 1.

2. In  $Idem(Mat(3 \times 3, \mathbb{Z}_2))$  the nontrivial elements are atoms, resp. antiatoms (28 of each sort). This orthoposet fails to be a lattice. The two atoms

| (100) | (110) |
|-------|-------|
| 000   | 000   |
| (000/ | (000/ |

have the following two antiatoms as common successors

| (100) | (100) |
|-------|-------|
| 010   | 010   |
| (000/ | (010/ |

Another argumentation that this orthoposet cannot be a lattice follows from

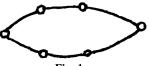
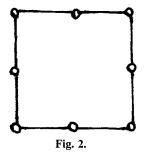


Fig. 1.



Greechie's amalgam theorem (Beran, 1985). *Idem*( $Mat(3 \times 3, \mathbb{Z}_2)$ ) consists of 28 copies of the maximal Boolean subalgebra  $2^3$ . Each atom is covered by three copies of  $2^3$ .

Each maximal Boolean subalgebra belongs to a quadrangles loop with the Greechie diagram shown in Fig. 2. Therefore the lattice structure is not valid. The orthoposet with the shown Greechie diagram is known as Janowitz poset  $J_{18}$  (Janowitz, 1968; Beran, 1985, pp. 148ff).

In Fig. 3 we draw an order diagram of  $J_{18}$  restricting to the 8 atoms and their antiatoms. This shows that the atoms 1 and 5 have the common successors  $3^{\perp}$  and  $7^{\perp}$ , analogously for 3, 7 and  $1^{\perp}$ ,  $5^{\perp}$ .

## 4. THE ORTHOMODULAR POSET OF SPLITTING SUBSPACES

Let **F** be any commutative field and  $\mathbf{V} = \mathbf{F}^n$  the finite-dimensional standard vector space over this field,  $n = \dim \mathbf{V}, n \ge 1$ .

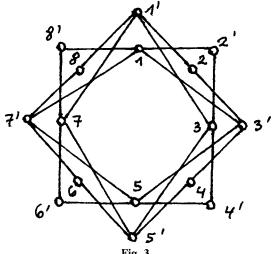


Fig. 3.

The standard inner product  $\langle \cdot, \cdot \rangle$ :  $\mathbf{V} \times \mathbf{V} \to \mathbf{F}$  is defined by  $\langle x, y \rangle$ :=  $\sum_{i=1}^{n} x_i \cdot y_i$  for vectors  $x = (x_1, x_2, \dots, x_n)$ ,  $y = (y_1, y_2, \dots, y_n)$  of **V**. This inner product is a symmetric bilinear form on **V**. Two vectors are called *orthogonal* (with respect to the standard inner product)

 $x \perp y$  iff their inner product is zero:  $\langle x, y \rangle = 0$ 

It may be that there are nonzero *isotropic* vectors in V, i.e.,  $x \perp x$  without x = 0. The natural base  $b_1 = (1, 0, 0, \dots, 0), \dots, b_n = (0, 0, \dots, 0, 1)$  forms an orthogonal base of V. For any subset  $A \subseteq V$  let

$$A^{\perp} := \{x \colon x \in \mathbf{V} \text{ with } x \perp a \text{ for all } a \in A\}$$

*Lemma.* The correspondence  $A \mapsto A^{\perp}$  in the power set  $Pow(\mathbf{V})$  of the vector space V has the following properties.

1.  $\emptyset^{\perp} = \mathbf{V} = \{0\}^{\perp}, \, \mathbf{V}^{\perp} = \{0\}.$ 

2.  $A \subseteq B \Rightarrow B^{\perp} \subseteq A^{\perp}$ .

3.  $A^{\perp}$  is always a linear subspace.

4.  $A \subseteq A^{\perp\perp}$ ; moreover,  $A^{\perp\perp} = span A$ . Every linear subspace F is orthogonal closed:  $F^{\perp\perp} = F$ .

5. For linear subspaces E, F of V,

 $(E+F)^{\perp} = E^{\perp} \cap F^{\perp}$  and  $(E \cap F)^{\perp} = E^{\perp} + F^{\perp}$ 

Proof. Properties 1-3 are straightforward.

Ad 4.  $A \subseteq A^{\perp \perp}$  is straightforward.  $A^{\perp \perp}$  is linear; therefore spanA  $\subseteq A^{\perp \perp}$ . Now we assume an element  $b \in A^{\perp \perp} \setminus spanA$ . Take a vector base B of spanA. Now,  $B \cup \{b\}$  can be extended to a vector base  $\overline{B}$  of V. Define a linear functional  $f: \mathbf{V} \to \mathbf{F}$  by setting f(b) = 1 and f = 0 on  $\overline{B} \setminus \{b\}$ . There is a unique representation vector  $y \in \mathbf{V}$  for f, i.e.,  $f(\cdot) = \langle \cdot, y \rangle$ . This y belongs to  $(spanA)^{\perp}$  and therefore to  $A^{\perp}$ . But

 $\langle y, b \rangle = 1$  implies b not orthogonal to y, i.e.,  $b \notin A^{\perp \perp}$ 

By this contradiction it must be that  $A^{\perp\perp} = spanA$ .

Ad 5.  $E \subseteq E + F$  and  $F \subseteq E + F$  imply  $(E + F)^{\perp} \subseteq E^{\perp} \cap F^{\perp}$ . For the converse let  $x \in E^{\perp} \cap F^{\perp}$  and  $u \in E$ ,  $v \in F$ .

Then  $x \perp u$  and  $x \perp v$  and therefore  $x \perp (u + v)$ , i.e.,  $x \in (E + F)^{\perp}$ . Thus  $E^{\perp} \cap F^{\perp} \subset (E + F)^{\perp}$ .

The other equation can be proven by application of  $(E + F)^{\perp} = E^{\perp} \cap F^{\perp}$  and the orthogonal closedness of linear subspaces. Namely,  $(E \cap F)^{\perp} = (E^{\perp \perp} \cap F^{\perp \perp})^{\perp} = ((E^{\perp} + F^{\perp}))^{\perp \perp} = E^{\perp} + F^{\perp}$ .

Now we consider the set Linsub(V) of all linear subspaces of the finitedimensional vector space  $V = F^n$  over the field F with respect to the partial order of inclusion and the unary operation  $\perp$  of orthogonality. The poset

#### **Orthomodular Posets of Idempotents**

 $(Linsub(\mathbf{F}^n), \subseteq)$  is a complete atomic modular lattice which is sometimes called the (n - 1)-dimensional projective geometry  $\mathbf{PG}_{n-1}(\mathbf{F})$  over the field  $\mathbf{F}$ . One has the following result.

Theorem 2. (Linsub( $\mathbf{F}^n$ ),  $\subseteq$ ,  $^{\perp}$ ), *n* natural number  $\geq 1$ , is a unit closed SOP (semiorthoposet) in the sense of Gudder (1994) in which the Morgan rules hold:

$$(E \lor F)^{\perp} = E^{\perp} \land F^{\perp}$$
  
 $(E \land P)^{\perp} = E^{\perp} \lor F^{\perp}$ 

This SOP in general contains strongly inconsistent elements, which means that there can be a linear subspace F for which  $F = F^{\perp}$ .

*Proof.* The first part is the content of the lemma. The supremum  $E \vee F$  equals E + F and the infimum  $E \wedge F$  equals  $E \cap F$ . For the existence of strongly inconsistent elements see, for example, the case  $\mathbf{F} = GF(2) = \mathbf{Z}_2$ . Then *Linsub*( $\mathbf{F}^2$ ) contains only the following three 1-dimensional subspaces:

$$E = \{00, 01\}$$
$$F = \{00, 10\}$$
$$G = \{00, 11\}$$

One has  $E^{\perp} = F$ ,  $F^{\perp} = E$ , and  $G = G^{\perp}$ .

The Hasse diagram of  $Linsub(\mathbf{F}^2)$  is the same as that of the subgroup lattice of the Klein four-group  $D_2$ .

Now we consider such linear subspaces F of  $\mathbf{V} = \mathbf{F}^n$  which split  $\mathbf{V}$  into the sum of F and its orthogonal  $F^{\perp}$ , i.e.,  $\mathbf{V} = F + F^{\perp}$ . In the notation of Gudder these are the *sharp* elements of the SOP *Linsub*( $\mathbf{F}^n$ ). Because of the lemma the splitting property  $\mathbf{V} = F + F^{\perp}$  is equivalent to  $F \cap F^{\perp} = \{0\}$ . The equivalence of  $\mathbf{V} = F + F^{\perp}$  and  $F \cap F^{\perp} = \{0\}$  is also a consequence of closedness of the SOP *Linsub*( $\mathbf{F}^n$ ). Let *Splittlinsub*( $\mathbf{F}^n$ ) be the set of all the splitting linear subspaces F of  $\mathbf{F}^n$ . The following holds for this set.

Theorem 3. (Splittlinsub( $\mathbf{F}^n$ ),  $\subseteq$ ,  $^{\perp}$ ) is an orthomodular poset (OMP) which is isomorphic to  $HermIdem(Mat(n \times n, \mathbf{F}))$  by the isomorphism

$$F \leftrightarrow P$$
 (projector  $P: \mathbf{F}^n \to \mathbf{F}^n$  with  $imP = F$ , ker  $P = F^{\perp}$ )

 $(Splittlinsub(\mathbf{F}^n), \subseteq, \bot)$  is in general not a sublattice of  $(Linsub(\mathbf{F}^n), \subseteq)$ .

*Proof.* Let  $S = Splittlinsub(F^n)$ . Then  $\{0\}$ ,  $F^n$  belong to S. Thus S is with respect to the inclusion a bounded poset and  $^{\perp}: S \to S$  is an orthocomple-

mentation on it. This orthoposet is in the case  $\mathbf{F} = GF(2)$  and  $\mathbf{V} = \mathbf{F}^3$  not a sublattice of (*Linsub*( $\mathbf{F}^3$ ),  $\subseteq$ ). Namely the pairs

$$E = \{000, 100\}, \qquad E^{\perp} = \{000, 001, 010, 011\}$$

and

$$F = \{000, 111\}, \quad F^{\perp} = \{000, 011, 101, 110\}$$

are splitting, but  $E^{\perp} \cap F^{\perp} = \{000, 011\}$  is not splitting because  $(E^{\perp} \cap F^{\perp})^{\perp} = \{000, 011, 100, 111\}.$ 

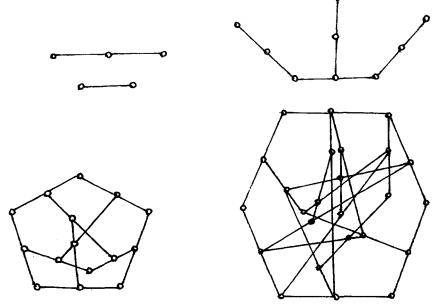
Now we have to argue for the isomorphism between *Splittlinsub*( $\mathbf{F}^n$ ) and *HermIdem*(*Mat*( $n \times n$ ,  $\mathbf{F}$ )). Let ( $F, F^{\perp}$ ) be a pair of splitting subspaces. To this pair corresponds a projection pair (P, Id - P), where P is defined by

$$Px = u \text{ iff } x = u + v \quad \text{with} \quad u \in F, \quad v \in F^{\perp}$$

*P*:  $\mathbf{F}^n \to \mathbf{F}^n$  belongs to the unital ring  $Linop(\mathbf{F}^n)$  of all linear operators on  $\mathbf{F}^n$ . This ring is endowed with an involution according to the standard scalar product:  $Linop \ni A \mapsto A^*$  defined by

$$\langle A^*x, y \rangle = \langle x, Ay \rangle$$
 for all  $x, y \in \mathbf{F}^n$ 

The considered projection P is a Hermitian idempotent. Conversely, a Her-





#### **Orthomodular Posets of Idempotents**

mitian idempotent  $Q \in Linop(\mathbf{F}^n)$  is determined by a splitting pair  $(F, F^{\perp})$ . One has only to take F := imQ. Then ker  $Q \perp F$  because for  $x \in \ker Q$ 

$$\langle x, Qz \rangle = \langle Q^*x, z \rangle = \langle Qx, z \rangle = 0$$
 for all  $z \in \mathbf{F}^n$ 

Thus ker  $Q \subseteq F^{\perp}$ . But for  $y \in F^{\perp}$  one has  $\langle y, Qz \rangle = 0$  for any z. Then  $\langle Qy, z \rangle = 0$ . This implies Qy = 0, i.e.,  $F^{\perp} \subseteq \ker Q$ . Thus  $(imQ, \ker Q)$  is an orthocomplemented pair. Moreover it splits, because  $x \in imQ \cap \ker Q$  implies Qx = 0 and x = Qz. Now  $Q^2 = Q$  and therefore  $Qx = Q^2z = Qz = x$ , i.e., x = 0. Via the standard base in  $\mathbf{F}^n$  each Hermitian idempotent linear operator corresponds to a Hermitian idempotent matrix over  $\mathbf{F}$ .

*Remark.* For the first Galois fields  $\mathbf{F} = GF(2)$ , GF(3), GF(4), GF(5) we identified the orthoposets of *SplittingLinsub*( $\mathbf{F}^3$ ) [ $\cong$  *HermIdem*(*Mat*( $3 \times 3, \mathbf{F}$ ))] by the Greechie diagrams given in Fig. 4.

# REFERENCES

Beran, L. (1985). Orthomodular Lattices-Algebraic Approach, Reidel, Dordrecht.

- Birkhoff, G. (1967). Lattice Theory, American Mathematical Society, Providence, Rhode Island. Flachsmeyer, J. (1982). Note on orthocomplemented posets, in Proceedings Conference on Topology and Measure III, Part 1 (Greifswald), pp. 65-75.
- Greechie, R. J. (1969). An orthomodular poset with a full set of states not embeddable in Hilbert space, *Caribbean Journal of Science and Mathematics*, 1, 15–26.

Gudder, S. P. (1994). Semi-orthoposets, preprint.

Harding, J. (1994). Decompositions in quantum logic, preprint.

- Janowitz, M. F. (1968). A note on generalized orthomodular lattices, Journal of Natural Sciences and Mathematics, 8, 89–94.
- Kalmbach, G. (1983). Orthomodular Lattices, Academie Press, London.
- Katrnoška, F. (1990). Logics of idempotents of rings, in Proceedings of the Second Winter School on Measure Theory, Liptovský Ján, pp. 100-104.