Orthomodular Posets of Idempotents in Finite Rings of Matrices

Jürgen Flachsmeyer¹

Received October 24, 1994

The idempotents, resp. Hermitian idempotents, of a unital ring, resp. involutive unital ring, form an orthomodular poset. We study these orthomodular posets for rings of matrices over the integers modulo m or over Galois fields. In analogy to the Hilbert space situation we look for idempotent matrices (projections) corresponding to splitting subspaces of finite-dimensional vector spaces.

1. IDEMPOTENTS OF A UNITAL RING

For a real or complex Hilbert space H let *Hilb(H)* be the corresponding complete atomistic ortholattice of all Hilbert subspaces $E \subset H$. In a canonical way this lattice is isomorphic to the lattice of all Hermitian idempotents of the Banach algebra $B(H)$ of all bounded (= continuous) linear operators A: $H \rightarrow H$. We have

> $Hilb$ **H** $) \leftrightarrow Proj$ **H**) $E (= imP) \leftrightarrow P$: **H** \rightarrow **H**

whereby $P \in B(H)$ with $P^2 = P$ and $P = P^*$. Instead of the algebra $B(H)$ one can start with any involutive unital ring \mathfrak{R}^* (Birkhoff, 1967) or even with any arbitrary unital ring \Re (Flachsmeyer, 1982; Katrnoška, 1990) to get by their Hermitian idempotents, respectively idempotents, an orthomodular poset. Let us recall the statements in full,

Theorem A. 1.1. Let \Re be an arbitrary ring with unit. Then the set *ldem*(\Re) = {x: $x \in \Re$, $x^2 = x$ } of all idempotents is an orthomodular poset with respect to the order

$$
x \le y: \Leftrightarrow x \cdot y = y \cdot x = x
$$

¹FB Mathematik/Informatik, Ernst-Moritz-Arndt-Universität, 17489 Greifswald, Germany.

1359

and the orthocomplement

 $x^{\perp}=1-x$

1.2. If $x \leq y$, then *inf(y, x*^{\perp}) exists and *inf(y, x*^{\perp}) = y - x.

1.3. Orthogonality in *Idem(9*k) means

$$
x \perp y \Leftrightarrow x \cdot y = y \cdot x = 0
$$

1.4. If $x \perp y$, then *sup(x, y)* exists and *sup(x, y)* = $x + y$.

2.1. If * is a ring involution on \Re , then the set *HermIdem(* \Re *)* = {x: x $\in \mathcal{R}, x^2 = x$ and $x^* = x$ of all Hermitian idempotents is an orthomodular poset with respect to the above-mentioned order and the orthocomplemention.

2.2. For *x*, $y \in HermIdem(\mathcal{R})$ and $x \leq y$ the difference $y - x$ belongs to *HermIdem(* \Re *)* and is the infimum of y and x^{\perp} .

2.3. If $x \perp y$, then $x + y$ belongs to *Hermldem(* \Re *)* and is the supremum of x and y .

Remark. In generalization of 1.2 and 1.4 the following properties in *HermIdem(R)* are fulfilled:

1.5. If x, y commute, i.e., $xy = yx$, then the infimum and the supremum exist and

$$
inf(x, y) = xy
$$

$$
sup(x, y) = x + y - xy
$$

Corollary. For a commutative unital ring \Re the orthomodular poset *Idem*(\Re) is a Boolean algebra.

The argumentation is as follows. By the commutativity *Idem(9k)* is an ortholattice and it is also distributive. Namely,

$$
x \wedge (y \vee z) = x(y \vee z) = x(y + z - yz) = xy + xz - xyz
$$

$$
(x \wedge y) \vee (x \wedge z) = xy \vee yz = xy + yz - xyz
$$

2. THE BOOLEAN ALGEBRA OF IDEMPOTENTS OF THE RING Zm

Let \mathbb{Z}_m be the ring of the rests 0, 1, 2, ..., $m - 1$ of the integers *mod* m. Now, \mathbb{Z}_m is a commutative unital ring, therefore *Idem*(\mathbb{Z}_m) has to be a finite Boolean algebra. How does one get it?

Theorem 1. 1. The Boolean algebra of all idempotents of the ring \mathbb{Z}_m is isomorphic to 2^k , where k is the number of the distinct prime factors of m:

Idem(
$$
\mathbb{Z}_m
$$
) $\approx 2^k$, $m = p_1^{v_1} p_2^{v_2} \cdots p_k^{v_k}$, $2 \le p_1 < p_2 < \cdots < p_k \le m$
where p_v are primes.

2. One obtains the nontrivial complemented pairs of *Idem(Z_m)* as follows: Let A, B be any nontrivial splitting of the set $\{1, 2, \ldots, k\}$, i.e., $A \neq$ $\emptyset, B \neq \emptyset, A \cap B = \emptyset, A \cup B = \{1, 2, ..., k\}.$

Define $a := \prod p_{\alpha}^{v_{\alpha}} (\alpha \in A), b := \prod p_{\beta}^{v_{\beta}} (\beta \in B).$

Then a, b are relatively prime, $(a, b) = 1$; therefore there exist integers u, v with $a \cdot u + b \cdot v = 1$.

By $\bar{a} := au \mod m$ and $\bar{b} := bv \mod m$ one has a complemented pair \overline{a} , *b* in *Idem*(\mathbf{Z}_m).

Proof. For \bar{a} , \bar{b} it remains to show that in *Idem*(\mathbb{Z}_m) the following are satisfied: $\overline{a} \wedge \overline{b} = 0$ and $\overline{a} \vee \overline{b} = 1$. According to 1.5 of the Remark this means

$$
\overline{a} \cdot \overline{b} = 0
$$
 and $\overline{a} + \overline{b} - \overline{a} \cdot \overline{b} = 1$ in \mathbb{Z}_m

But this holds by definition of \bar{a} and \bar{b} .

Table I shows the situation for some *m*.

3. HOW MANY IDEMPOTENT MATRICES EXIST OVER Z_m ?

For a given model m and a given format number n we ask for the number of idempotent, resp. Hermitian idempotent, matrices of size $n \times n$ over the basic ring \mathbb{Z}_m .

> $card(Idem(Mat(n \times n, \mathbb{Z}_m)))$ $card(HermIdem(Mat(n \times n, \mathbb{Z}_m)))$

We will take the involution in the ring $Mat(n \times n, \mathbb{Z}_m)$ of matrices over \mathbb{Z}_m

Table II.

as the matrix transpose: $A \mapsto A^{\top}$. We are far from a general sufficient answer. With the help of computers we counted the list in Table II.

We conclude this section with a few remarks on the order structure of *Idem(\R)* and *HermIdem(\R)*. Also with the help of computers we identified some of them and obtained their Greechie diagrams.

Remark. 1. HermIdem(Mat(2 \times *2, Z₆))* is the amalgam of two Boolean algebras $2⁴$ with the Greechie diagram given in Fig. 1.

2. In *Idem(Mat(3* \times 3, **Z**₂)) the nontrivial elements are atoms, resp. antiatoms (28 of each sort). This orthoposet fails to be a lattice. The two atoms

have the following two antiatoms as common successors

Another argumentation that this orthoposet cannot be a lattice follows from

Fig. 1.

Greechie's amalgam theorem (Beran, 1985). *Idem(Mat(3* \times 3, \mathbb{Z}_2)) consists of 28 copies of the maximal Boolean subalgebra $2³$. Each atom is covered by three copies of $2³$.

Each maximal Boolean subalgebra belongs to a quadrangles loop with the Greechie diagram shown in Fig. 2. Therefore the lattice structure is not valid. The orthoposet with the shown Greechie diagram is known as Janowitz poset J_{18} (Janowitz, 1968; Beran, 1985, pp. 148ff).

In Fig. 3 we draw an order diagram of J_{18} restricting to the 8 atoms and their antiatoms. This shows that the atoms 1 and 5 have the common successors 3^{\perp} and 7^{\perp} , analogously for 3, 7 and 1^{\perp} , 5^{\perp} .

4. THE ORTHOMODULAR POSET OF SPLITTING SUBSPACES

Let **F** be any commutative field and $V = Fⁿ$ the finite-dimensional standard vector space over this field, $n = \dim V$, $n \ge 1$.

The standard inner product $\langle \cdot, \cdot \rangle : V \times V \to F$ is defined by $\langle x, y \rangle$ $S_i = \sum_{i=1}^n x_i \cdot y_i$ for vectors $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n)$ of **V**. This inner product is a symmetric bilinear form on V. Two vectors are called *orthogonal* (with respect to the standard inner product)

 $x \perp y$ iff their inner product is *zero:* $\langle x, y \rangle = 0$

It may be that there are nonzero *isotropic* vectors in V, i.e., $x \perp x$ without $x = 0$. The natural base $b_1 = (1, 0, 0, \ldots, 0), \ldots, b_n = (0, 0, \ldots, 0, 1)$ forms an orthogonal base of V. For any subset $A \subset V$ let

$$
A^{\perp} := \{x \colon x \in \mathbf{V} \text{ with } x \perp a \text{ for all } a \in A\}
$$

Lemma. The correspondence $A \mapsto A^{\perp}$ in the power set $Pow(V)$ of the vector space V has the following properties.

1. $\emptyset^{\perp} = V = \{0\}^{\perp}, V^{\perp} = \{0\}.$

2. $A \subseteq B \Rightarrow B^{\perp} \subseteq A^{\perp}$.

3. A^{\perp} is always a linear subspace.

4. $A \subset A^{\perp \perp}$; moreover, $A^{\perp \perp} = span A$. Every linear subspace F is orthogonal closed: $F^{\perp \perp} = F$.

5. For linear subspaces E , F of V ,

 $(E + F)^{\perp} = E^{\perp} \cap F^{\perp}$ and $(E \cap F)^{\perp} = E^{\perp} + F^{\perp}$

Proof. Properties 1-3 are straightforward.

Ad 4. $A \subseteq A^{\perp \perp}$ is straightforward. $A^{\perp \perp}$ is linear; therefore *spanA* \subseteq $A^{\perp \perp}$. Now we assume an element $b \in A^{\perp \perp}$ *spanA*. Take a vector base B of *spanA.* Now, $B \cup \{b\}$ can be extended to a vector base \overline{B} of V. Define a linear functional $f: V \to F$ by setting $f(b) = 1$ and $f = 0$ on $\overline{B}\setminus\{b\}$. There is a unique representation vector $y \in V$ for f, i.e., $f(\cdot) = \langle \cdot, y \rangle$. This y belongs to $(spanA)^{\perp}$ and therefore to A^{\perp} . But

 $\langle y, b \rangle = 1$ implies b not orthogonal to y, i.e., $b \notin A^{\perp \perp}$

By this contradiction it must be that $A^{\perp \perp} = span A$.

Ad 5. $E \subseteq E + F$ and $F \subseteq E + F$ imply $(E + F)^{\perp} \subseteq E^{\perp} \cap F^{\perp}$.

For the converse let $x \in E^{\perp} \cap F^{\perp}$ and $u \in E$, $v \in F$.

Then $x \perp u$ and $x \perp v$ and therefore $x \perp (u + v)$, i.e., $x \in (E + F)^{\perp}$. Thus $E^{\perp} \cap F^{\perp} \subset (E+F)^{\perp}$.

The other equation can be proven by application of $(E + F)^{\perp} = E^{\perp} \cap$ F^{\perp} and the orthogonal closedness of linear subspaces. Namely, $(E \cap F)^{\perp}$ $= (E^{\perp} \cap F^{\perp} \perp)$ $= ((E^{\perp} + F^{\perp}))^{\perp} = E^{\perp} + F^{\perp}$.

Now we consider the set *Linsub(V)* of all linear subspaces of the finitedimensional vector space $V = F^n$ over the field F with respect to the partial order of inclusion and the unary operation \perp of orthogonality. The poset

Orthomodular Posets of Idempotents 1365

(Linsub(\mathbf{F}^n), \subset) is a complete atomic modular lattice which is sometimes called the $(n - 1)$ -dimensional projective geometry $\mathbf{PG}_{n-1}(\mathbf{F})$ over the field **F**. One has the following result.

Theorem 2. (Linsub(Fⁿ), \subset *,* \perp *), n* natural number \geq 1, is a unit closed SOP (semiorthoposet) in the sense of Gudder (1994) in which the Morgan rules hold:

$$
(E \vee F)^{\perp} = E^{\perp} \wedge F^{\perp}
$$

$$
(E \wedge P)^{\perp} = E^{\perp} \vee F^{\perp}
$$

This SOP in general contains strongly inconsistent elements, which means that there can be a linear subspace F for which $F = F^{\perp}$.

Proof. The first part is the content of the lemma. The supremum $E \vee$ F equals $E + F$ and the infimum $E \wedge F$ equals $E \cap F$. For the existence of strongly inconsistent elements see, for example, the case $\mathbf{F} = GF(2) = \mathbf{Z}_2$. Then $Linsub(\mathbf{F}^2)$ contains only the following three 1-dimensional subspaces:

$$
E = \{00, 01\}
$$

$$
F = \{00, 10\}
$$

$$
G = \{00, 11\}
$$

One has $E^{\perp} = F$, $F^{\perp} = E$, and $G = G^{\perp}$.

The Hasse diagram of $Linsub(\mathbf{F}^2)$ is the same as that of the subgroup lattice of the Klein four-group D_2 .

Now we consider such linear subspaces F of $V = F^n$ which split V into the sum of F and its orthogonal F^{\perp} , i.e., $V = F + F^{\perp}$. In the notation of Gudder these are the *sharp* elements of the SOP *Linsub(Fn).* Because of the lemma the splitting property $V = F + F^{\perp}$ is equivalent to $F \cap F^{\perp} = \{0\}.$ The equivalence of $V = F + F^{\perp}$ and $F \cap F^{\perp} = \{0\}$ is also a consequence of closedness of the SOP *Linsub(F").* Let *Splittlinsub(F")* be the set of all the splitting linear subspaces F of \mathbf{F}^n . The following holds for this set.

Theorem 3. (Splittlinsub(F^n), \subseteq , \perp) is an orthomodular poset (OMP) which is isomorphic to *Hermldem(Mat(n* \times *n, F))* by the isomorphism

$$
F \leftrightarrow P
$$
 (projector $P: \mathbf{F}^n \to \mathbf{F}^n$ with $imP = F$, ker $P = F^{\perp}$)

(Splittlinsub(Fⁿ), \subset *,* \perp *)* is in general not a sublattice of *(Linsub(Fⁿ),* \subset *).*

Proof. Let $S = Split t linsub(Fⁿ)$. Then $\{0\}$, $Fⁿ$ belong to S. Thus S is with respect to the inclusion a bounded poset and \pm : $S \rightarrow S$ is an orthocomplementation on it. This orthoposet is in the case $\mathbf{F} = GF(2)$ and $\mathbf{V} = \mathbf{F}^3$ not a sublattice of *(Linsub(F³)*, \subset). Namely the pairs

$$
E = \{000, 100\}, \qquad E^{\perp} = \{000, 001, 010, 011\}
$$

and

$$
F = \{000, 111\}, \qquad F^{\perp} = \{000, 011, 101, 110\}
$$

are splitting, but $E^{\perp} \cap F^{\perp} = \{000, 011\}$ is not splitting because $(E^{\perp} \cap$ F^{\perp} ^{\perp} = {000, 011, 100, 111}.

Now we have to argue for the isomorphism between *Splittlinsub*(\mathbf{F}^n) and *HermIdem(Mat(n* \times *n*, **F**)). Let (*F*, F^{\perp}) be a pair of splitting subspaces. To this pair corresponds a projection pair $(P, Id - P)$, where P is defined by

$$
Px = u \text{ iff } x = u + v \qquad \text{with} \qquad u \in F, \quad v \in F^{\perp}
$$

P: $\mathbf{F}^n \to \mathbf{F}^n$ belongs to the unital ring *Linop(* \mathbf{F}^n) of all linear operators on \mathbf{F}^n . This ring is endowed with an involution according to the standard scalar product: *Linop* \Rightarrow $A \rightarrow A^*$ defined by

$$
\langle A^*x, y \rangle = \langle x, Ay \rangle \quad \text{for all} \quad x, y \in \mathbf{F}^n
$$

The considered projection P is a Hermitian idempotent. Conversely, a Her-

Orthomodular Posets of Idempotents 1367

mitian idempotent $Q \in Linop(\mathbf{F}^n)$ is determined by a splitting pair (F, F^{\perp}) . One has only to take $F := imO$. Then ker $O \perp F$ because for $x \in \text{ker } O$

$$
\langle x, Qz \rangle = \langle Q^*x, z \rangle = \langle Qx, z \rangle = 0
$$
 for all $z \in \mathbb{F}^n$

Thus ker $Q \subset F^{\perp}$. But for $y \in F^{\perp}$ one has $\langle y, Q_z \rangle = 0$ for any z. Then $\langle Qy, \rangle$ z) = 0. This implies $Qy = 0$, i.e., $F^{\perp} \subseteq \text{ker } Q$. Thus $\text{(im}Q, \text{ker } Q)$ is an **orthocomplemented pair.** Moreover it splits, because $x \in imQ \cap \text{ker } Q$ **implies** $Qx = 0$ and $x = Qz$. Now $Q^2 = Q$ and therefore $Qx = Q^2z = Qz$ $= x$, i.e., $x = 0$. Via the standard base in \mathbf{F}^n each Hermitian idempotent **linear operator corresponds to a Hermitian idempotent matrix over F**. ■

Remark. For the first Galois fields $\mathbf{F} = GF(2), GF(3), GF(4), GF(5))$ we identified the orthoposets of *SplittingLinsub(F³)* [\cong *HermIdem(Mat(3* \times **3, F))] by the Greechie diagrams given in Fig. 4.**

REFERENCES

Beran, L. (1985). *Orthomodalar Lattices-Algebraic Approach,* Reidel, Dordrecht.

- B irkhoff, G. (1967). *Lattice Theory,* American Mathematical Society, Providence, Rhode Island. Flachsmeyer, J. (1982). Note on orthocomplemented posets, in *Proceedings Conference on Topology and Measure II1,* Part 1 (Greifswald), pp. 65-75.
- Greechie, R. J. (1969). An orthomodular poset with a full set of states not embeddable in Hilbert space, *Caribbean Journal of Science and Mathematics*, 1, 15-26.

Gudder, S. P. (1994). Semi-orthoposets, preprint.

Harding, J. (1994). Decompositions in quantum logic, preprint.

Janowitz, M. F. (1968). A note on generalized orthomodular lattices, *Journal of Natural Sciences and Mathematics,* 8, 89-94.

Kalmbach, G. (1983). *Orthomodular Lattices,* Academie Press, London.

Katrnoška, F. (1990). Logics of idempotents of rings, in *Proceedings of the Second Winter School on Measure Theory, Liptovský Ján, pp. 100-104.*